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Abstract

We investigate music sequence classification by leveraging deep learning methods
including Recurrent Neural Network (RNN) and one-dimensional convolutional
neural network (Conv1D), and classical machine learning classifiers. We find that
deep learning methods have a better performance in terms of classification accuracy
than classical machine learning classification models, such as logistic regression,
SVM, KNN and tree-based models. We also explore the architecture of deep
learning models and realize that stacking multiple Conv1D networks has a more
significant improvement in capturing the patterns of music sequence compared
to stacking multiple RNNs, specifically LSTMs. Besides, we also explore Music
generation by LSTMs for the purpose of creating music content that belong to
different types of genres so that we can increase the richness of the therapeutic
music database. Our code can be found at this link.

1 Introduction

Among the 40 million adults or 18% of the total population in the USA who suffer from anxiety, only
37% receive medical treatment. Anxiety disorders are the most common mental illness in the US.
According to the World Health Organization 2019 Report, music is clinically proven to be effective
in treating, managing and coping with anxiety disorders. In a society with pharmaceutical products
as major treatments, music therapy offers wellness options that are therapeutic, non-invasive, and
promote independent coping.

However, current music therapy is observation-based and lacks quantitative tools to quantify, manage,
and improve real-time effectiveness. Thus, music therapists lack data to optimize treatments for
patients. We see a huge opportunity in the medical application of wearable-enhanced music therapy
in psychological treatment and maintenance.

In this project, our focus will be on developing and implementing an algorithm that is able to
learn sequential patterns in music to predict whether a song is suitable for therapeutics, as well as
establishing a mechanism that enables deeper quantitative understanding about what music features
matter most to accurately identify its own kind. We will be selecting and training our classification
model by leveraging well-categorized music playlists in Epidemic Sound music database, and then
be testing it on self-labeled data of music types.

2 Background

Sequence Classification: There has been work on using the combination of convolutional and
recurrent neural networks for sequence classification, especially with implementation in the field
of text classification (Siwei Lai, 2015). It has been proven that using convolutional layers, which
plays the role of representation learning to capture latent semantic patterns, is going to improve the
performance of recurrent models. Such method has been implemented in music classification (Keun-
woo Choi, 2016), where CNN is leveraged to extract local music features as a better representation.
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Howeyver, it was not clear which RNN model was used in the music classification work. Hence, we
specifically compared stacks of LSTMs and its bidirectional version in our work.

Sequence Generation: Sequence generation has been widely researched in the fields of NLP and
music. The most common methods include Variational AutoEncoders (VAE) (Adam Roberts, 2019)
and Generative Adverserial Networks (GAN) (Sang-gil Lee and Yoon, 2018), which turn out to have
high quality of sequence reconstruction and generation. These methods, however, also suffer from
the issue of computational inefficiency and mode collapsing, especially for GAN.

3 Methodology

3.1 Classifiers

ConvlD and RNN: We propose to use 1-Dimensional Convolutional Neural Network (Conv1D)
to learn the latent features of the music and feed the extracted sequence information into Recurrent
Neural Networks (RNN) which is good at processing data in the format of time series. We use
Long short-term memory (LSTM) Networks and its bidirectional version (BiLSTM) to model the
latent representations from Conv1D and eventually output the results with a 5-dimensional softmax
activation function after a few feedforward dense layers. We have experimented the idea using
three main types of neural network architecture, which include 1) purely LSTM-based, 2) stacks of
alternating layers of Conv1Ds and LSTMs, 3) heavily Conv1D based followed by one layer of LSTM.
We have also compared the performance using LSTM and BiLSTM. The results are discussed in
Section 4.

The following figures have demonstrated the structure of the three neural networks we have imple-
mented with Bidirectional LSTMs.

Layer (type) Output Shape Param #
bidirectional_ 24 (Bidirectio (None, 800, 512) 528384
dropout_24 (Dropout) (None, 800, 512) 0
bidirectional_ 25 (Bidirectio (None, 800, 256) 656384
dropout_25 (Dropout) (None, 800, 256) 0
bidirectional_26 (Bidirectio (None, 128) 164352
dropout_26 (Dropout) (None, 128) 0
dense_24 (Dense) (None, 128) 16512
dense_25 (Dense) (None, 64) 8256
dense_26 (Dense) (None, 5) 325

Total params: 1,374,213
Trainable params: 1,374,213
Non-trainable params: 0

Figure 1: Bidirectional Neural Network with stacks of pure LSTMs.



Layer (type) Output Shape Param #

convld (ConvlD) (None, 14993, 256) 2304
max_poolingld (MaxPoolinglD) (None, 3748, 256) 0
bidirectional_ 27 (Bidirectio (None, 3748, 512) 1050624
dropout_27 (Dropout) (None, 3748, 512) 0
convld 1 (ConvlD) (None, 3741, 128) 524416
max poolingld 1 (MaxPoolingl (None, 935, 128) 0
bidirectional 28 (Bidirectio (None, 935, 256) 263168
dropout_28 (Dropout) (None, 935, 256) 0
convld 2 (ConvlD) (None, 928, 64) 131136
max_poolingld 2 (MaxPoolingl (None, 232, 64) 0
bidirectional 29 (Bidirectio (None, 128) 66048
dropout_29 (Dropout) (None, 128) 0
dense_27 (Dense) (None, 32) 4128
dense_28 (Dense) (None, 16) 528
dense_29 (Dense) (None, 5) 85

Total params: 2,042,437
Trainable params: 2,042,437
Non-trainable params: 0

Figure 2: Stacks of alternating layers of Conv1Ds and Bidirectional LSTMs.

Layer (type) Output Shape Param #
convld 3 (ConvlD) (None, 14993, 128) 1152
max_poolingld 3 (MaxPoolingl (None, 3748, 128) 0
dropout_30 (Dropout) (None, 3748, 128) 0
convld_4 (ConvlD) (None, 3741, 64) 65600
max_poolingld_4 (MaxPoolingl (None, 935, 64) 0
dropout_31 (Dropout) (None, 935, 64) 0
convld 5 (ConvlD) (None, 928, 32) 16416
max_poolingld 5 (MaxPoolingl (None, 232, 32) 0
dropout_32 (Dropout) (None, 232, 32) 0
bidirectional 30 (Bidirectio (None, 32) 6272
dropout_33 (Dropout) (None, 32) 0
dense_30 (Dense) (None, 16) 528
dense_31 (Dense) (None, 5) 85

Total params: 90,053
Trainable params: 90,053
Non-trainable params: 0

Figure 3: Bidirectional Neural Network with stacks of pure LSTMs.



ML Classifiers: To serve as baselines, we also propose to use classical classification models in
machine learning, including Random Forests, Support Vector Machine (SVM), K Nearest Neighbors
(KNN), Multivariate Logistic Regression, and Gradient Boosting. We have trained our models using
Gridsearch Cross Validation for hyperparameter tuning and have compared our outputs with neural
networks, which will be demonstrated in Section 4.2.

3.2 Generation

Within this work, inspired by modelling in sequence classification, we propose to use one layer of
Conv1D and one layer of LSTM for music generation. The model fitting procedure is conducted by
splitting a whole music sequence into training sequence and testing sequence, so that we can predict
the testing notes based on the previous sequences. Some example plots have been illustrated as below.
From the generation outputs, it can be seen that ConvlD and LSTM are able to capture the general
trend of the music sequence, though it is difficult to capture the exact fluctuality of the sequences.
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Figure 4: Music Sequence Generated - 1
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Figure 5: Music Sequence Generated - 2
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Figure 6: Music Sequence Generated - 3
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Figure 7: Music Sequence Generated - 4

Future work needs to be done to discover better sequence generation models, such as VAE and
SeqGANSs, as mentioned in Section 2.

4 Experiments and Results

We have selected a music list of 50 songs in Epidemic Sound music website, with musical feature
tags of relatively distinct emotional and contextual characteristics. These musical pieces are also
shortlisted for having similar length of sequence — around three minutes, therefore, they can be fairly
used in our model training and testing processes with similar number of notes. Our collection of
music sequences were labelled by humans with five different categories: Calming, Sports, Mysterious,
Nostalgia, and Happy. Due to the fact that humans’ preferences for certain types of music could trace
back to their childhood environments, cultures and personal experiences (Thoma MV, 2013), it is
essential that our model can capture the pattern for the intrinsic bias in music for an individual. That
is, to accurately identify the music type a human prefers to listen to in a certain scenario, e.g. when
they want to calm down or feel like doing sports.

4.1 Experiments

We have converted the 50 songs into MiDi files and have used MiDi notes as our sequence data. Due
to the limitation in the total number of songs we have, we augmented the richness of the dataset by
splitting each song into segments of length 800-note series, with the label for each music segment
being identical to the original song it belongs to. By doing so, we end up obtaining a collection of 835
music segments with 800 time steps for each segment. We have also converted the labels by one-hot
encoding. We then implement the classifiers mentioned in Section 3 onto the enriched dataset. The
training and testing ratio is 0.8.

mp3 files MIDI (Musical Instrument mido

Preselected Music
ust Digital Interface) files

Musical Notes Sequence

converted into

MIDI stores inforr

ne
MIDI

Output Category

1.Calming

2.Sports

3. Mysterious

4. Nostalgia

5. Happy

Figure 8: Music Sequence Classification Pipeline



4.2 Results

The experiment results for the classifiers are the following:

NN1 NN2 NN3 Bi-NN1 Bi-NN2 Bi-NN3
Train  0.3593 0.3593 0.6991 0.3593  0.6640  0.6976
Test 03772 0.3772 07126  0.3772  0.7305  0.6674

Table 1: NN1, NN2 and NN3 represent the following three neural networks mentioned in Section 3: 1) purely
LSTM-based, 2) stacks of alternating layers of Conv1Ds and LSTMs, 3) heavily Conv1D based followed by one
layer of LSTM. Bi-NN models are using Bidirectional LSTMs.

RF SVM KNN Logit GradBoost
Train 0.6302 0.6362 0.7515 0.5300 0.9
Test  0.5210 0.5030 0.2635 0.5090 0.5689

Table 2: Other classifier were all trained using GridSearchCV to find the best hyperparameters.

From Table 1, it can be seen that models with convolutional networks generally have a better
performance in terms of class prediction accuracy. In particular, models heavily using Conv1D layers
with one LSTM layer tend to perform generally well, with or without the LSTMs being bidirectional.
The best model for the predictive task is Bi-NN2, which uses alternating layers of Conv1D and
Bidirectional LSTM. The out-of-sample testing accuracy has peaked at 0.7305, which is much higher
than its non-neural network counterparts.

The results have convinced us that the convolutional recurrent neural network framework is good at
capturing the patterns in music sequence data, which contains information about human’s bias and
preferences for different music types.

5 Conclusion

In this paper, we have specifically focused on using music notes data for sequence classification and
generation and end up having promising results as proof of concept. We have demonstrated that
sequential patterns in music can be reasonably well captured by stacks of convolutional and recurrent
layers of neural networks. Also, LSTMs can be used for music sequence generation, though we
cannot guarantee the granularity of the generated music to be highly consistent with the original ones.

In the future, we would like to incorporate more musical features, such as tempo, key, beat, and tatum,
to enrich the dimensions of feature space. In addition, we would also conduct lyrical and sentimental
analysis by leveraging NLP techniques in order to achieve more comprehensive music analytical
results. For music generation, VAE and Sequence GAN are great methods to explore, using the
LSTM results in this work as baseline to compare with. Also, since music by nature can be classified
into multiple categories, which is not the approach we take in this paper, ideally we will be able to
achieve more granular results by predicting distributional outputs for music classification, rather than
deterministic ones.



References

C.R. C. H. D. E. Adam Roberts, Jesse Engel. A hierarchical latent vector model for learning long-term structure
in music, 2019. 2

M. S. K. C. Keunwoo Choi, Gyorgy Fazekas. Convolutional recurrent neural networks for music classification,
2016. 1

S. M. Sang-gil Lee, Uiwon Hwang and S. Yoon. Polyphonic music generation with sequence generative
adversarial networks, 2018. 2

K. L.J.Z. Siwei Lai, Liheng Xu. Recurrent convolutional neural networks for text classification, 2015. 1

B.R.FE L. E. U. N. U. Thoma MV, La Marca R. The effect of music on the human stress response, 2013. 5



